a2 United States Patent

Dunstan et al.

US009158769B2

US 9,158,769 B2
Oct. 13, 2015

(10) Patent No.:
(45) Date of Patent:

(54) SYSTEMS AND METHODS FOR NETWORK
CONTENT DELIVERY

(76) Inventors: Adam Dunstan, Watertown, MA (US);
Christopher W. Gunner, Harvard, MA
(US); Stephan Richter, Maynard, MA
(US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 67 days.

(21) Appl. No.: 13/161,598

(22) Filed: Jun. 16,2011
(65) Prior Publication Data
US 2011/0302320 Al Dec. 8, 2011

Related U.S. Application Data

(63) Continuation-in-part of application No. 12/974,589,
filed on Dec. 21, 2010, now abandoned.

(60) Provisional application No. 61/355,190, filed on Jun.
16, 2010, provisional application No. 61/290,388,
filed on Dec. 28, 2009.

(51) Int.CL
GOGF 15/173 (2006.01)
GOGF 1730 (2006.01)
HO4L 12/18 (2006.01)
HO4L 29/08 (2006.01)
HO4L 29/06 (2006.01)
108 —.
104

(52) US.CL
CPC GOG6F 17/30017 (2013.01); HO4L 12/185
(2013.01); HO4L 67/145 (2013.01); HO4L
67/146 (2013.01); HO4L 67/2842 (2013.01);
HO4L 69/22 (2013.01)
(58) Field of Classification Search
CPC ..ocorvvvvnicrcicne HO4L 67/145; HO4L 67/146
USPC coovivveeeiienee 709/235, 238, 715/713, 730
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

2007/0150814 Al* 6/2007 MOITIS ..ocooovrviiiiiiiinns 715/730

* cited by examiner

Primary Examiner — Adnan Mirza

(74) Attorney, Agent, or Firm — Seyfarth Shaw LLP; Joseph
M. Walker

(57) ABSTRACT

A content delivery system including a subscriber controller
and cache, a source controller configured to transmit content
to the subscriber controller and cache via a multicast trans-
mission; and a network content delivery controller (NCDC)
in communication with the subscriber controller and cache
and source controller. A control plane is used to communicate
the delivery of control information using Extensible Messag-
ing and Presence Protocol (XMPP) between the subscriber
controller and cache, source controller, and NCDC.

21 Claims, 8 Drawing Sheets

12 —

—— 100

Consumer

02—

U.S. Patent Oct. 13, 2015 Sheet 1 of 8 US 9,158,769 B2

110 - 106 —

100

104 104 — 104

U.S. Patent Oct. 13,2015 Sheet 2 of 8

200

202

204 —

- lnvalid—

US 9,158,769 B2

206

U.S. Patent

Oct. 13,2015 Sheet 3 of 8

US 9,158,769 B2

106

104a 104b

| Controller
and Cache 1

 Controller

Create MCast Stream

A

304
Subscribe to MCast /
Stream

306 —.

.| Send content fragment (x) via MC

Subscribe to MCast
Stream

310 308

.| Send content fragment (n) via MC o

FIG. 3

U.S. Patent Oct. 13, 2015 Sheet 4 of 8 US 9,158,769 B2

104 — = G
N \. | Subscrib
Controlle
and Cachen

400 —.

.| 4 Request content fragment (x)
402 —.

\\\

Create MCast Stream

404 :

.| Send content fragment (x) via UC
405 . g

.| Send content fragment (x) via MC

Subscribe to MCast
Stream

408 - N

.| Request content fragment (n) 406
410 —

.| Send content fragment (n) via UC
412 —

.| Send content fragment (1) via MC o

FI1G. 4

U.S. Patent Oct. 13, 2015 Sheet 5 of 8 US 9,158,769 B2

106 — [=
ource

. Controll o 1 Controller

and Cache |

500 —
Create MCast Stream
A 502
Subscribe to MCast |
Stream

504 —

Send fragment (1st) via MC |
506 —

Send fragment (2nd) viaMC

Subscribe to MCast
Stream

510 o 508

.| Send fragment (last) via MC _ -
512

Send fragment (Ist) viaMC o

FIG. 5

U.S. Patent Oct. 13, 2015 Sheet 6 of 8 US 9,158,769 B2

Register Subscribgr on MUC: caches
P Send group list: 225.0.0.1 for avatar.ism/.*
Register Source Cache on MUC: caches
) L Send group list: 225.0.0.1 for avatar.ism/.*
608 N
610 . _Giet /avatar.ism/Fragments(0)/...
Create MCast Server
for 225.0.0.1
612 —. -
.| Returns avatar.ism/Tragments(0)/. data
o A 614
Create MCast Client |~
tor 225.0.0.1
616 —.
615 . Send /avatar.ism/Fragments(0)/.. via MC
) et /avatar.ism/Fragments(1)/...
620 ! é]
621 | Returns avatar.ism/Fragments(1)/.. /data
521 —— -
Send /avatar.ism/Tragments(1)/.. via MC
805 pm
Create MCast Client
for 225.0.0.1
624 - -t <
626 -t Get /avatar.ism/Fragments(0Y. .. N 622
Returns avatar.isyn/Fragments(0)/...data o
628 e wbe
630 " - Get /avatar.ism/Tragments(n-1)/...
Returns avatar.isnyFragments(n-1)/...data o
632 — -
" .. _Get Javatarism/Tragments(<n>)
634 — -
; ism/Fr <> .
636 Returns avatar.ism/Fragments(: ol data Subseriber
638 .| Send /avatar.ism/Fragments(<m>) yia MC Controller and
2 o g .
" Send /avatar.ism/Fragments(<n>) via MC - Cd.ChL n only.
» reccived data via
Multicast
Later
Unregister Subscriber on MUC: caches -
640

FIG. 6

U.S. Patent

Oct. 13, 2015

104a — N

Sheet 7 of 8

US 9,158,769 B2

o) 4:30 pm
Send /sb.ism/Fragments(0)/...via MC_
Create MCast Server
for 225.0.0.2
704
. Get /sb.ism/Manifest 702
706 —.
Returns (mod.) /sb.ism/Maifest
(last fragment is <1>)
712
Send /sb.ism/Fragments(<n+1>) via ME
714 —
Send /sb.ism/Fragments(<n>+<m=>) via MC
4:45 pm
Create MCast Client
for 225.0.0.2
718 N
] Get /sb.igm/Manifest 716
720 —.
. Returns (mod,) /sb.ism/Maifest o
(last fragment is <p>+<m>) o
722
.| Send /sb.ism/Fragments(<n>+<m>+1) via MC All Subscribers
724 — receive data via
AN Send /sb.ism/Fragments(<n>+<m>+1) via MC o Multicast. No lcad

FIG. 7

is needed

US 9,158,769 B2

Sheet 8 of 8

Oct. 13,2015

U.S. Patent

ST

q008 —

2008 —

wasiy

TONNQIISICT

US 9,158,769 B2

1
SYSTEMS AND METHODS FOR NETWORK
CONTENT DELIVERY

CROSS REFERENCES TO RELATED
APPLICATIONS

This application claims the benefit of U.S. Provisional
Patent Application Ser. No. 61/355,190, filed Jun. 16, 2010
and is a continuation-in-part (CIP) of U.S. patent application
Ser. No. 12/974,589, filed Dec. 21, 2010, which claims the
benefit of U.S. Provisional Patent Application Ser. No.
61/290,388, filed Dec. 28, 2009, the contents of which are
incorporated herein by reference in their entirety.

FIELD

The systems and methods disclosed herein relate generally
to information networks. More particularly, the systems and
methods disclosed herein relate to systems and methods for
network content delivery.

BACKGROUND

First invented in 1998, the Extensible Messaging and Pres-
ence Protocol (XMPP) is a real-time communication technol-
ogy based on core protocols and developed by the XMPP
open source community. XMPP is used for various applica-
tions such as instant messaging, presence, multi-party chat,
voice and video calls, collaboration, lightweight middleware,
content syndication, and generalized routing of XML data.
The XMPP Standards Foundation is an open standards devel-
opment organization that defines open protocols for presence,
instant messaging, and real-time communication. Such appli-
cations are based on a decentralized infrastructure for internet
communication.

Currently, two methods, unicast and broadcast are used to
deliver content such as video and multimedia to consumers
from content providers. Unicast, the predominant choice for
communication and content delivery via the Internet, delivers
the same data stream to each consumer. This results in par-
ticular content being potentially transmitted multiple times
through the network. In terms of multimedia streams, the
required network capacity is the number of consumers times
the bit rate of the content, which creates a limit to the number
of consumers that the system can support. Broadcast, the
method used by cable companies to deliver TV stations,
delivers all available content streams all the times. The
required network capacity is the number of channels times the
bit rate of the content, which creates a limit to the number of
channels that the system can support assuming constant net-
work capacity.

SUMMARY

The systems and methods for network content delivery
disclosed herein enable content providers, such as content/
cable providers in the cable industry, to increase network
capacity to support more consumers, more content channels
and to free up bandwidth for other network use without hav-
ing to add additional hardware. In an illustrative embodiment,
the systems and methods for network content delivery pro-
vide a scalable, HT'TP-based content delivery system (CDS)
for large networks that enables efficient delivery of content,
specifically multimedia, on such large networks. Typically,
the CDS utilizes multicast to deliver content to all interested
consumers without duplicating any data flow and to minimize
the load on edge routers.

10

15

20

25

30

35

40

45

50

55

60

65

2

In an illustrative embodiment, the CDS is designed to
improve the content delivery for HI'TP-based content trans-
fer. The CDS uses HTTP-based content transfer because
caching is part of the HTTP original design. Furthermore, the
target audiences of the CDS, including cable providers, typi-
cally use HTTP to deliver multimedia content to consumers
using, for example, HTTP-based multimedia clients such as
Microsoft® Silverlight® Smooth Streaming.

In an illustrative embodiment, the CDS embraces HTTP by
injecting transparent HTTP proxies at critical edges of the
network. The CDS uses these proxies to provide entry points
into bandwidth-efficient content delivery. Internally the CDS
uses multicast transmissions to optimize the content delivery.
In an illustrative embodiment, a control plane to communi-
cate the delivery of control information across all logical
components of the CDS. The control plane may be imple-
mented using Extensible Messaging and Presence Protocol
(XMPP) as its communication protocol since XMPP provides
ahigh degree of scalability. However, it should be appreciated
that alternative protocols can be used.

In an illustrative embodiment, the CDS includes at least
one consumer device, at least one subscriber controller and
cache, at least one source controller, at least one content
source server, at least one network content delivery controller
(NCDC), and at least one HT'TP server. The source controller
manages the sending of multicast data based on incoming
HTTP requests and/or other policy. The subscriber controller
and cache decides whether a request for content is forwarded
to the HTTP server, source controller, or served directly from
the local cache of the subscriber controller and cache to the
consumer device. The NCDC manages the control plane of
the CDS. Illustratively, the control plane communicates the
types of requests that are handled by the CDS between the
subscriber controller and cache, the source controller, and the
NCDC.

In anillustrative embodiment, the subscriber controller and
cache and the source controller register with a multi-user chat
(MUC) by sending messages to the NCDC in XMPP. The
NCDC then transmits a multicast group list in XMPP to each
of the subscriber controller and cache and the source control-
ler. In response to the NCDC transmission, the source con-
troller creates a multicast transmission. The subscriber con-
troller and cache subscribes to the multicast transmission to
receive content via multicast.

BRIEF DESCRIPTION OF THE DRAWINGS

The systems and methods disclosed herein are illustrated in
the figures of the accompanying drawings which are meant to
be exemplary and not limiting, in which like references are
intended to refer to like or corresponding parts, and in which:

FIG. 1 illustrates an embodiment of a content delivery
system (CDS) architecture for implementing the systems and
methods for network content delivery;

FIG. 2 illustrates a block flow diagram of an embodiment
of a subscriber controller and cache handling a packet flow;

FIG. 3 illustrates a flow diagram of an embodiment of a live
stream delivery method;

FIG. 4 illustrates a flow diagram of an embodiment of a
driven delivery method;

FIG. 5 illustrates a flow diagram of an embodiment of a
rotating delivery method;

FIG. 6 illustrates a flow diagram of an embodiment of the
CDS delivering a video on demand;

FIG. 7 illustrates a flow diagram of an embodiment of the
CDS delivering a live stream; and

US 9,158,769 B2

3

FIG. 8 illustrates an embodiment of a deep delivery hier-
archy.

DETAILED DESCRIPTION

Detailed embodiments of the systems and methods for
network content delivery are disclosed herein, however, it is
to be understood that the disclosed embodiments are merely
exemplary of the systems and methods, which may be
embodied in various forms. Therefore, specific functional
details disclosed herein are not to be interpreted as limiting,
but merely as a basis for the claims and as a representative
basis for teaching one skilled in the art to variously employ
the systems and methods disclosed herein.

Generally, the systems and methods disclosed herein
include and may be implemented within a computer system
or network of computer systems having one or more data-
bases and other storage apparatuses, servers, and additional
components, such as processors, modems, terminals and dis-
plays, computer-readable media, algorithms, modules, and
other computer-related components. The computer systems
are especially configured and adapted to perform the func-
tions and processes of the systems and methods as disclosed
herein.

Communications between components in the systems and
methods disclosed herein may be bidirectional electronic
communication through a wired or wireless network. For
example, one component may be networked directly, indi-
rectly, through a third party intermediary, wirelessly, over the
Internet, or otherwise with another component to enable com-
munication between the components.

A system architecture for implementing the systems and
methods for network content delivery according to an illus-
trative embodiment is described with reference to FIG. 1. As
illustrated, the system is a content delivery system (CDS)
100. In an illustrative embodiment, the CDS 100 is designed
to allow content delivery via regular hypertext transfer pro-
tocol (HTTP) requests and uses a simple, scalable multicast
transmission protocol. Typically, the CDS 100 utilizes mul-
ticast to deliver content to all interested consumers without
duplicating any data flow and to minimize the load on edge
routers and network connections between systems. Alterna-
tively, when the CDS 100 is not available for one reason or
another, the overall network behavior may simply fall back to
using HTTP protocol and unicast transmission of content.

In an illustrative embodiment, the CDS 100 typically
includes at least one consumer device 102, at least one sub-
scriber controller and cache 104, at least one source controller
106, at least one content source server 108, at least one net-
work content delivery controller (NCDC) 110, and at least
one HTTP server 112. In an illustrative embodiment, the
consumer device 102 is a device, such as but not limited to a
television, cable modem, set top box, computer, or other
device capable of receiving and/or displaying multimedia
content.

In an illustrative embodiment, the subscriber controller and
cache (also referred to herein as the subscriber controller) 104
is in communication with the consumer device 102, the
source controller 106, the NCDC 110, and the HTTP server
112. The subscriber controller and cache 104 ensures that
content is delivered from the cache of the subscriber control-
ler and cache 104 to the consumer device 102 when available,
avoiding unneeded requests over the network. The subscriber
controller and cache 104 is typically part of a home gateway.
The subscriber controller and cache 104 is typically a device
that sits at the edge of a consumer’s network, such as but not
limited to a server, computer, processor, database, and/or set

10

15

20

25

30

35

40

45

50

55

60

65

4

top box including a modem, router, and/or various software.
Additionally, the subscriber controller and cache 104 can
manage multicast clients, which are instances of receiving the
multicast content stream. Variants of the subscriber controller
and cache 104 are used as network-to-network gateways to
allow distribution of content from one provider network into
another; and as hierarchical components in a large single
provider network to provide scalability.

In an illustrative embodiment, the source controller 106 is
in communication with the subscriber controller and cache
104, the content source server 108, and the NCDC 110. The
source controller 106 illustratively is a server, computer, pro-
cessor, and/or other device capable of receiving and transmit-
ting content. The source controller 106 handles incoming
requests for content from the subscriber controller and cache
104. The source controller 106 manages multicast servers,
which are instances of serving a multicast content stream,
whether running locally or remotely via the NCDC 110. In a
large provider network, multiple source controllers 106 may
be used to provide scalability.

Additionally, the source controller 106 and the subscriber
controller and cache 104 can be packaged together in one or
more servers, computers, and/or processors. In an illustrative
example, the source controller 106 and the subscriber con-
troller and cache 104 can be packaged together in a Network-
to-Network Gateway to allow distribution of content from
one provider network into another. In another illustrative
example, the source controller 106 and the subscriber con-
troller and cache 104 can be packaged together in a Distribu-
tion System, which can be a hierarchical component in a large
single provider network to provide scalability.

In an illustrative embodiment, the content source server
108 is in communication with the source controller 106. The
content source server 108 is typically a HT'TP server or other
device capable of serving content files and/or file fragments to
the source controller 106, such as but not limited to a server,
computer, and/or processor. The content source server 108
provides multimedia content to the source controller 106 in
the form of a sequence of file fragments and a manifest for
each specific content, such as but not limited to a video or
audio segment.

In an illustrative embodiment, the NCDC 110 is in com-
munication with the subscriber controller and cache 104 and
the source controller 106. The NCDC 110 illustratively is a
server, computer, processor, and/or other device capable of
communicating with the subscriber controller and cache 104
and the source controller 106. The NCDC 110 manages a
control plane 114 of the CDS 100, which communicates the
types of requests that are handled by the CDS 100 between the
subscriber controller and cache 104, the source controller
106, and the NCDC 110. The NCDC 110 typically maintains
a global state of all available delivery content, and commu-
nicates state among the source controller 106 and subscriber
controller and cache 104. In a large provider network the
NCDC 110 may consist of multiple physical systems that
coordinate the NCDC 110 function to provide scalability.

In an illustrative embodiment, the CDS 100 includes a
content provider side and a content receiver side. On the
content provider side the source controller 106 manages the
sending of multicast data based on incoming HTTP requests
and/or other policy. On the receiver side, the subscriber con-
troller and cache 104 decides whether a request for content is
forwarded to the HTTP server 112, source controller 106, or
served directly from the local cache of the subscriber control-
ler and cache 104, which is typically filled by multicast trans-
mission.

US 9,158,769 B2

5

Requests are forwarded from the subscriber controller and
cache 104 to the HTTP server 112, ifthe subscriber controller
and cache 104 does not provide cached results. Commonly,
requests are forwarded to the HTTP server 112 when the
requests are non-multimedia requests, such as a Google
search. In other words, the HTTP server 112 allows for non-
CDS content delivery, for example the HTTP server 112
allows arbitrary Web surfing via the Internet. The subscriber
controller and cache 104 uses its knowledge of Uniform
Resource Locator (URL) regular expressions that match CDS
content to make the determination of whether to forward the
request to the HTTP server 112. That knowledge is distrib-
uted to all subscriber controllers and caches 104 using the
control plane 114.

A request for content is served to the consumer device 102
from the local subscriber cache of the subscriber controller
and cache 104 if the requested content exists in the subscriber
controller and cache 104. In normal operation, content may
exist in the subscriber controller and cache 104 as a result of
unicast, broadcast, or multicast content delivery. A simple
hash comparison of the URL value in the request with the
URL value stored in the cache of the subscriber controller and
cache 104 can be used to match a request to a result.

If a request for CDS content is not found in the subscriber
controller and cache 104, the CDS 100 forwards the requestto
the source controller 106. The source controller 106 answers
the request, typically by communicating the request to the
content source server 108 and forwarding the response of the
content source server 108 to the consumer device 102, via the
subscriber controller and cache 104. However, at this point
the source controller 106 has the opportunity to use policy to
control the multicast flow. For example, in one model, an
HTTP request could trigger the response of the request to be
sent out to a plurality of consumer devices 102 via multicast.
In a second model, the source controller 106 may respond to
the request with a unicast HTTP transfer and also initiate
setup of a multicast group for transmission of the same con-
tent. In addition, the source controller 106 can manipulate the
response to guide the consumer device 102 into a particular
behavior.

As described above, the NCDC 110 manages the control
plane 114 of the CDS 100. The control plane 114 communi-
cates the types of requests that are handled by the CDS 100
between the subscriber controller and cache 104, the source
controller 106, and the NCDC 110. In an illustrative embodi-
ment, a type of request is known as a content group or group.
In multimedia terms a group usually represents a particular
movie or stream. For example, the “avatar” group for a movie
titled “Avatar” may be represented by the following URL
regular expression: http://cdn\.a-bb\.net/avatar\ism/.*

For illustrative purposes, all of the following URL requests
will match the “avatar” group:

10

15

20

25

30

35

40

45

50

6

their changes to any registered source controller 106 and
subscriber controller and cache 104. The source controller
106 in return, communicates any active multicast sessions to
the NCDC 110 for record keeping and provider management.
The subscriber controller and cache 104 in return, communi-
cates active multicast sessions to the NCDC 110 for record
keeping and provider management.

The NCDC 110 is also capable of providing run-time infor-
mation of the CDS 100 and providing management control
functions to control all components of the CDS 100. For
example, the NCDC 110 may allow disabling of any multicast
session on any subscriber controller and cache 104.

As mentioned above, the CDS 100 typically uses multicast
to transmit content to multiple consumers via the consumer
devices 102 at once. The idea is that multiple consumers
consume the same content at the same time. Instead of requir-
ing one unicast stream for each consumer, only one multicast
transmission is needed to serve all consumers. This is particu-
larly true for live stream content, but even popular content on
demand can benefit.

In an illustrative embodiment, each multimedia artifact,
such as but not limited to a movie, a live stream, etc., is
assigned to one multicast group. A multicast group is typi-
cally a specific internet protocol (IP) Multicast Address. Each
active content group that the CDS 100 determines to transmit
via multicast will result in the CDS 100 assigning one or more
specific multicast groups to that content. Since the number of
multicast groups that can be in use at any time is limited both
because of the multicast group address space but more impor-
tantly because of the scaling limitations of routers used in the
content provider’s network, the set of available multicast
groups is treated as a pool which the NCDC 110 manages.
More particularly, when the source controller 106 starts a
multicast transmission the source controller 106 requests an
assignment of a multicast group from the NCDC 110. The
NCDC 110 assigns a new multicast group to the content
group and removes the assigned multicast group from the free
pool.

Typically, the multimedia artifact is served up using mul-
tiple small fragments of the overall content. In an illustrative
embodiment, the source controller 106 creates a multicast
server on the source controller 106, which is an instance of
serving a multicast content stream. The source controller 106
sends one fragment at a time to the subscriber controller and
caches 104 subscribed to the multicast group. If a consumeris
consuming a given multimedia artifact, the subscriber con-
troller and caches 104 associated with that consumer simply
subscribes to that multicast group or creates a multicast client
on the subscriber controller and caches 104, which is an
instance of receiving the multicast content stream, to receive
the content. If the subscriber controller and caches 104 does
not receive a desired fragment in time via multicast, the CDS

http: //edn\.a-bb\.net/avatar\.ism/Manifest

http://cdn\.a-bb\.net/avatar\.ism/QualityLevels(350000)/Fragments(video=0)
http://cdn\.a-bb\.net/avatar\.ism/QualityLevels(64000)/Fragments(audio=0)

Each group may also be given meta-data such as a title, a
multicast group name and other optional attributes, such as
the desired video and audio bit rates. The additional attributes
can then be used within the system to manage, locate and
choose content. For example, the consumer may be presented
with a browsing interface, via the consumer device 102, to the
meta-data to facilitate choice of content.

The NCDC 110 manages the list of all available groups.
The NCDC 110 also communicates the group listings and all

60

65

100 can simply fulfill the request via unicast. This ensures
proper initialization and provides interesting content delivery
policy opportunities.

In an illustrative embodiment, the source point of the mul-
ticast transmission is the source controller(s) 106, and the end
point is the subscriber controller and cache(s) 104. Since
HTTP is a request/response based protocol, a new communi-
cation CDS multicast content delivery protocol (CMCDP) is
implemented for the multicast transmission. The goals of the

US 9,158,769 B2

7

CMCDP are to handle out-of order packets, allow for some
data loss and to not attempt to error correct.

The CMCDP may be designed to deliver multimedia con-
tent fragments. A fragment is a part of a complete multimedia
content, such as but not limited to, a part of a movie. Each
fragment is transmitted using multicast as a series of IP pack-
ets. In an illustrative embodiment, the CMCDP is designed to
allow for out-of-order reception of packets since standard IP
multipath routing techniques can result in packets traversing
different network paths and arriving at a destination in a
different order to that of their transmission.

The CMCDP may be designed to allow for some loss of
packets. Packets may not be delivered to the destination for
many reasons, including congestion on network links. The
CMCDP allows for a fraction of the packets to be lost while
still reassembling and using the resulting fragment. Multime-
dia content is still usable for consumer presentation, via the
consumer devices 102 in the presence of some data loss. The
amount and specific loss characteristics that are acceptable
depend on properties of the multimedia content. The CMCDP
can implement content-aware configurable policies for
acceptable loss algorithms. An example of an acceptable loss
algorithm may be a threshold packet loss rate such that if the
packet loss rate measured for a fragment exceeds the config-
urable threshold then the fragment is discarded, otherwise it is
retained.

An alternative acceptable loss algorithm extends the above
example by making the configured parameters specific to a
content type. For example, if the content type is MPEG
encoded video. The subscriber controller and cache 104 can
determine the content type either from the manifest if present
in the manifest, or the subscriber controller and cache 104
may inspect the data of the fragment to detect the presence of
MPEG frames for which there are well-known algorithms.

Another alternative acceptable loss algorithm extends the
above examples by having a configurable frame loss thresh-
old for MPEG and [, P and B frames. The effect of losing each
of these frame types is different on the consumer device—
having decreasing significance in the visual impairment from
1to B frame types. Therefore, the loss threshold can be dif-
ferent for each frame type for a given approximate acceptable
impairment threshold. To compute the loss rate of each frame
type, the subscriber controller and cache 104 inspects the
received data to detect each frame and its type and then
maintains a frequency measurement for the occurrence of
each frame type. Using the lost packet count and frequencies
the subscriber controller and cache 104 predicts the approxi-
mate lost frame count of each type and from that the approxi-
mate loss rate of each type.

The CMCDP may also be designed to allow only simple
error detection. Since multimedia content is still presentable
to the consumer, via the consumer device 102 in the presence
of some errors, the CMCDP may be optimized to only per-
form simple IP-level error detection. This error detection may
be implemented as a standard user diagram protocol (UDP)
header checksum computation and check.

In an illustrative embodiment, the source controller 106
opens a multicast socket or creates a multicast server once and
keeps it permanently open. Each content fragment is trans-
mitted by the source controller 106 to the subscriber control-
ler and cache 104 in a unique CMCDP session. Each content
fragment can be transmitted using packets that fit the path
maximum transmission unit (MTU) to avoid IP packet frag-
mentation and reassembly overhead.

In an illustrative embodiment, each CMCDP session is
assigned a session identifier (id). The id of the session is

10

15

20

25

30

35

40

45

50

55

60

65

8

typically a Message-Digest algorithm 5 (MDS5) hash of the
path segment of the URL. For example, given the URL:
http://cdn.a-bb.net/avatar.ism/QL(350000)/Frags
(video=0)?token=e4a6720b

The path segment is:

/avatar.ism/QL(350000)/Frags (video=0)

Thus, the resulting session 1D would be (in hex represen-

tation):
b24e758ebb6e826d7a7th9adc49bbb93

In an illustrative embodiment, the CMCDP uses UDP as its
protocol. The CMCDP uses a defined port number as the
value of the UDP destination port to allow for demultiplexing
at the subscriber controller and cache 104.

In an illustrative example, the session id is sent in all
packets. Generally, a session starts with a CDS header packet
of the following format:

0x01<16 byte id> <number of packets (32-bit)>

Byte 1: The packet type. 0x01 is the header type.
Bytes 2-17: The session id in binary form.
Bytes 18-21: The number of data packets of this session.

After the CDS header packet, the specified amount of data
packets is sent. In an illustrative example, the specified
amount of data packets is sent in the following format:

0x02 <16 byte id> <packet number (32-bit)> <data>

Byte 1: The packet type. 0x02 is the data type.

Bytes 2-17: The session id in binary form.

Bytes 18-21: The packet number (chronological id) of
the data packet.

Bytes 22-: The actual packet data. The size of the data
should not exceed:
data_size=MTU size—UDP Header—CDS Header

For example, an IPv4 system with a standard MTU size
of 1492 bytes has a maximum data size of:
1492-28-21=1443 bytes

The packet number can be used to properly reconstruct a
fragment from its sequence of packets. The subscriber con-
troller and cache 104 or the multicast client on the subscriber
controller and cache 104 implements the policy under which
packets are received, fragments are reassembled and packet
loss is handled. While the CMCDP is described above in
accordance with the illustrative example, it should be appre-
ciated by one skilled in the art that various other protocols can
be used.

A block flow diagram of the subscriber controller and
cache 104/multicast client handling a packet flow according
to an illustrative embodiment is described with reference to
FIG. 2. As illustrated, the subscriber controller and cache 104
receives a new packet 200 and parses the new packet’s CDS
header 202 to determine the CDS packet type 204. If no valid
CDS packet type is found, an error is logged 206 and the new
packet is ignored 208.

Ifavalid CDS packet type is found, the subscriber control-
ler and cache 104 looks up the session 210 using the session
id to determine if a session exists 212. If no session is found,
a new session context is created 214. It does not matter
whether the session initializing packet is a header or a data
packet, since they might be received out of order.

The subscriber controller and cache 104 then determines
whether the new packet is a header or data packet 216. If the
new packet is a header, the new packet is written as a header
in the session context and the number of data packets to
expect is set or stored 218 on the session. If the new packet is
a data packet, the data packet’s data along with its data packet
id is stored 222 in the session context.

A session is complete 224 when the last data packet which
completes the session is received or a timeout occurs. If the
new packet is not the last data packet the subscriber controller

US 9,158,769 B2

9

and cache 104 is done 226 or has completed processing of the
new packet and the subscriber controller and cache 104 waits
for additional packets. If the new packet is the last data packet
which completes the session, the session’s data is written 228
to disk and the session context is removed 230 from the
session list. After the session context is removed 230, the
subscriber controller and cache 104 is done 232 or has com-
pleted processing of the new packet and the subscriber con-
troller and cache 104 waits for additional packets. It is irrel-
evant that new packets might arrive out of order as the session
waits until all data has been received before performing reas-
sembly.

In the event of packet loss, a timeout is used to determine
when to stop waiting for further packets to arrive. Such a
timeout can be automatically determined by using knowledge
about the content itself. For example, if the content consists of
2 second duration video and audio fragments, waiting longer
than 2 seconds makes no sense, since the data reception would
lag the actual consumption of the data.

Once a session timeout occurs, it should be determined
whether enough data was received to store the content as a
valid fragment or not. Again, some content-based heuristics
can be used to make this determination. In an illustrative
embodiment, since it is known how many packets should have
arrived, the fraction of packets that actually were received can
be computed and a cutoff for storage can be created. This
algorithm may be sufficient for audio, but not necessarily for
video. In an illustrative embodiment, a video fragment com-
monly consists of a key frame and updates to that key frame.
Thus, one can mandate that key frames are not lost while
allowing for some fractional loss rate of update frames.

As described above, the CDS 100 typically utilizes multi-
cast to deliver content to all interested consumers. Based on
the type of multimedia content, several policies can be
deployed to serve the content via multicast. In an illustrative
embodiment, a live stream delivery is used. Typically, normal
viewing of a live stream starts on request with the latest
available content and then continues indefinitely. Thus, it is
desirable to start serving the content via multicast as soon as
it becomes available. In one potential policy, the first con-
sumer of the live stream causes the source controller 106 to
start transmitting the content via multicast. At this point any
subscriber controller and cache 104 subscribing to the live
stream will immediately receive files or file fragments for its
cache. A flow diagram of a live stream delivery method
according to an illustrative embodiment is described with
reference to FIG. 3. As illustrated in FIG. 3, a first subscriber
controller and cache 104a sends a request 300 to the source
controller 106 for the live content. The source controller 106
creates 302 a multicast stream for the live content. Once the
multicast stream is created, the first subscriber controller and
cache 104a can subscribe 304 to the multicast stream.

The source controller 106 then sends 306 the live content
files or file fragments to the subscribed subscriber controller
and cache 104q via the multicast stream. Further, a second
subscriber controller and cache 1045 can subscribe 308 to the
multicast stream to receive the live content files or file frag-
ments. As illustrated in FIG. 3, the source controller 106
sends 310 the live content files or file fragments to all of the
subscribed subscriber controller and caches 104a and 1405
via the multicast stream.

In an illustrative embodiment, a buffer may be created to
ensure that the source controller 106 can deliver the content
before it is requested by the subscriber controller and caches
104a and 1045. This buffer can be easily achieved by having
the subscriber controller and caches 104a and 1045 trail the
actual live content by a number of fragments. See “Microsoft

10

15

20

25

30

35

40

45

50

55

60

65

10

Smooth Streaming” for a concrete example of accomplishing
this. Inthis case the subscriber controller and caches 1044 and
10454 receive the first few seconds, the depth of the buffer in
seconds, via unicast while at the same time receiving the
multicast content. By imposing a delay of the buffer depth in
seconds on display to the consumer via the consumer device
102, the subscriber controller and caches 104a and 1045 can
ensure that a buffer of the next few seconds of content is
maintained. This allows the subscriber controller and caches
104a and 10454 to adapt to network delay and to detect delay
and switch between bit rates of the content.

A policy might be implemented in the source controller
106 to shut down a live stream. The simplest method is to
leave the live stream running forever. If there is no subscriber
controller and cache 1044 or 1045 subscribed to the multicast
stream, the router handling the multicast routing closest to the
source controller 106 will simply ignore the packets and
throw them away. Another policy might shut down the live
stream after a certain amount of time after the last subscriber
controller and cache 1044 or 1045 has unsubscribed from the
stream. Knowledge of which subscriber controller and caches
104a and 1045 are members of the stream or group is main-
tained through the control plane 114 as explained earlier.

Inanillustrative embodiment, a driven delivery is used. For
pre-recorded (on-demand) content, the live stream delivery
policy is less desirable, since the source controller 106 might
send the last fragments of the content before the subscriber
controller and cache 104 subscribes to the content. In this case
the subscriber controller and cache 104 will request most of
the content via unicast and thus minimize the effect of the
multicast delivery.

A flow diagram of a driven delivery method according to an
illustrative embodiment is described with reference to FIG. 4.
As illustrated in FIG. 4, a subscriber controller and cache
104a sends 400 a request for content to the source controller
106. The source controller 106 creates 402 a multicast stream
that only sends a fragment via multicast when any subscriber
controller and cache first requests the fragment. The source
controller 106 then sends 404 a content fragment to the sub-
scriber controller and cache 104a via unicast and sends 405
the same fragment via multicast.

A second subscriber controller and cache 1045 can sub-
scribe 406 to the multicast stream. In this illustrative embodi-
ment, the leading subscriber controller and cache 104a, the
subscriber controller and cache that makes requests first,
receives content via unicast. As illustrated in FIG. 4, the
leading subscriber controller and cache 104a requests 408 the
next content fragment. In response to the request 408, the
source controller 106 sends 410 data to the lead subscriber
controller and cache 104a via unicast and sends 412 the same
data via multicast for the benefit of non-lead subscriber con-
troller and caches 104b.

Determination of when to setup and transmit content via
multicast can be made by policy such as specific content
being tagged as popular. Alternatively, the determination of
when to setup and transmit content via multicast could be
triggered by the second subscriber controller and cache 1045
requesting the same content. In addition, such policies can be
made adaptive based on the congestion state of the paths in the
network. For example, if there is a shared network segment in
the path that is congested then the policy to start sending via
multicast may be deferred until the second subscriber con-
troller and cache 1045 joins where the transmission path to
the subscriber controller and cache 1045 includes the con-
gested segment.

If a mutlicast group has been started, then non-lead sub-
scriber controller and cache 1045 will have the requests

US 9,158,769 B2

11

locally cached in the subscriber controller and cache 1045 as
a result of receiving via multicast. The non-lead subscriber
controller and caches 1045 may also use unicast to receive
content initially until the cache in the subscriber controller
and cache 1045 contains data received via the multicast trans-
mission. This is because the non-lead subscriber controller
and cache 10454 is consuming the content at a lag time relative
to the lead subscriber controller and cache 1044 and only
started receiving the multicast content after some number of
initial fragments have already been transmitted. Therefore,
the non-lead subscriber controller and cache 1045 receives
the missed fragments via unicast while at the same time
receiving future fragments via multicast.

The multicast stream may be shut down after the last frag-
ment of the content is served. A downside to this simple
delivery model is that non-lead subscriber controller and
caches 1045 might join a multicast transmission near the end
and thus the efficiency effect is low.

In an illustrative embodiment, a rotating delivery may be
used. A flow diagram of a rotating delivery method according
to an illustrative embodiment is described with reference to
FIG. 5. The rotating delivery addresses the shortcomings of
the driven delivery described above, by restarting the multi-
cast transmission of the content once the end is reached pro-
vided at least one subscriber controller and cache 104a or
10454 is still subscribed to the multicast stream. Rotating
delivery can be used with the standalone or driven delivery
model.

As illustrated in FIG. 5, the source controller 106 creates
500 a multicast stream for a requested content, and a first
subscriber controller and cache 104a subscribes 502 to the
multicast stream. The source controller 106 sends 504 a first
content fragment to the first subscriber controller and cache
1044 via multicast. The source controller 106 then sends 506
a second content fragment to the first subscriber controller
and cache 104a via multicast and so on. Later a second
subscriber controller and cache 1045 subscribes 508 to the
multicast stream. However, the second subscriber controller
and cache 1045 has subscribed late in the multicast stream for
the content. The source controller 106 then sends 510 a last
content fragment to the first and second subscriber controller
and caches 104a and 1045 via multicast. In the rotating deliv-
ery method, the multicast stream does not end but restarts
once the end is reached. Thus, the source controller 106 then
resends 512 the first content fragment to the first and second
subscriber controller and caches 1044 and 1045 via multicast
and so on.

In an illustrative embodiment, a partitioned rotating deliv-
ery may be used. The partitioned delivery uses multiple mul-
ticast streams to transmit various sections of a piece of con-
tent, for example, a separate multicast stream can be
transmitted for each section operating in parallel. For
example, a 90 minute movie might split into 18 sections, and
thus 18 multicast streams, of 5 minutes worth of content. Each
multicast stream repeats its section transmission over and
over again provided at least one subscriber controller and
cache 104 is still subscribed to the multicast stream.

This approach creates an upper bound on the unicast trans-
mission for each subscriber controller and cache 104, in our
example 5 minutes. After that, the subscriber controller and
cache 104 is guaranteed to receive the data via multicast
transmission. However, this delivery method is more complex
than the others, since it needs a more elaborate subscriber
controller and cache 104 implementation that manages
switching to new multicast groups as section boundaries are
reached.

10

15

20

25

30

35

40

45

50

55

60

65

12

In an illustrative embodiment, a method of adjusting deliv-
ery rates may be used. Even with good network throughput
stability, there are cases when delivery of a particular network
channel slows down to the point where content cannot be
received fast enough to keep up with the consumption of the
subscriber controller and cache 104 or the loss rate exceeds
that allowing for reassembly. As described above, the system
may automatically switch to unicast. If the network slow-
down is systemic, many subscriber controller and caches 104
will switch to unicast at the same time causing worse conges-
tion.

To address this issue, multiple delivery bit rates for video
and audio are available. In a production system, multiple bit
rates of the same content may be transmitted via multicast for
an active group.

The subscriber controller and cache 104 detects a network
slowdown by observing the time it takes to receive a fragment
and checking this duration against the length of media content
the fragment provides. For example, if 5 two-second frag-
ments are received in 3 seconds each, 1*5 seconds worth of
buffer was lost due to lag. In addition, the subscriber control-
ler and cache 104 can use the recent loss rate as input to the
algorithm to determine what bit rate to request.

Using this and other heuristics, if a subscriber controller
and cache 104 detects a significant slowdown, the subscriber
controller and cache 104 switches to a lower rate multicast
transmission that will lower the fragment transmission rate.
The subscriber controller and cache 104 can determine what
bit rate transmissions are available for the content from the
NCDC 110. This information can be sent in the control plane
114.

Similarly, when files are received fast enough at a low
enough loss rate so that a higher bit rate can be supported, the
subscriber controller and cache 104 can switch back to the
higher bit rate multicast group. The rate switching algorithm
can include hysteresis to avoid switching at too high arate and
too frequently.

As described above with reference to FIG. 1, the CDS 100
includes a control plane 114, which communicates the types
of requests that are handled by the CDS 100 between the
subscriber controller and cache 104, the source controller
106, and the NCDC 110. In an illustrative embodiment, the
control plane 114 is used to communicate available groups to
both the source controller 106 and the subscriber controller
and cache 104, and any changes with the NCDC 110. The
implementation of the control plane 114 protocol may be
Extensible Messaging and Presence Protocol (XMPP). In
essence, the NCDC 110 may act as an XMPP bot listening for
presence declarations and incoming messages.

When the source controller 106 and/or the subscriber con-
troller and cache 104 are initialized, the source controller 106
and/or the subscriber controller and cache 104 announce their
initial presence to the XMPP server on the NCDC 110 and in
addition join a multi-user chat (MUC) to which announce-
ments are made. When the NCDC 110 receives an initial
presence the NCDC 110 sends the current list of all groups to
the source controller 106 and the subscriber controller and
cache 104.

When a group is added, modified or deleted, the NCDC 110
sends a broadcast to the multi-user chat (MUC). The source
controller 106 and the subscriber controller and cache 104 are
expected to detect these announcements and adjust their
group listing accordingly. When a group is deleted, the source
controller 106 and the subscriber controller and cache 104 are
expected to shut down its multicast server or multicast client.

US 9,158,769 B2

13

In addition to group state broadcasting, the NCDC 110 can
also be configured via XMPP messaging. Further, queries and
inserts can be used to modify the groups and request various
state updates.

In an illustrative embodiment, fully qualified Jabber Ids
(JIDs) are used as Ids for the subscriber controller and cache
104, the source controller 106, the NCDC 110, and Command
Language Interface (CLI), which is a management interface
used to configure/control the system. The common format of
the JID is:

<node-name>@<ncdc-hostname>/ncdc

For the multi-user chat (MUC) this becomes:

caches @<ncdc-hostname>/<node-name>
The NCDC 110 is reachable under the following JID:
ncde@<ncdc-hostname>/ncde
Note: Since the resource part is “ncdc”, an implementa-
tion might choose to hide this detail.

In an illustrative embodiment, a simple XML format is
used to encode groups for transmission within XMPP stanzas.
Iustratively, all elements are in the cdn:data namespace. The
root element is called <group> and contains the title and type
attribute. The title of the group is typically an identifier by
which the group can later be accessed. The type of the group
specifies how the group and its data are handled in the various
caches. Optionally, the root element can contain any number
of child elements. The element name is property name within
the group and the element’s content is the corresponding
value. As an illustrative example:

<group xmlns="cdn:data” type="live” title="style-live”>
<urliregex>ﬁhttp:
/... /Style.isml/. *$</url_regex> <name>230 .0.0.3</name>
<video__bitrate>150000</video__bitrate>
<audio_ bitrate>96000</audio__bitrate>
</group>

In an illustrative embodiment, a multi-user chat (MUC)
presence may be made. For example:

Stanza: presence
From: caches@muc. <ncdc-hostname>/<cache-name>
To: nede@host/nede

When each of the subscriber controller and cache 104 and
the source controller 106 initially start, the subscriber con-
troller and cache 104 and the source controller 106 each
register with the “caches@muc.<ncdc-hostname>" multi-
user chat (MUC) group by sending a presence stanza to the
NCDC 110. The NCDC 110 listens for this stanza and
responds by sending a private message to each of the sub-
scriber controller and cache 104 node and the source control-
ler 106 node listing all available groups.

This call typically does not expect any application errors. If
the NCDC 110 is not present when the subscriber controller
and cache 104 and/or the source controller 106 enter the
MUC, then the subscriber controller and cache 104 and/or the
source controller 106 simply do not receive a list of groups.
Once the NCDC 110 comes online it can send a list of groups
to all the subscriber controllers and caches 104 and the source
controllers 106 automatically.

Anillustrative example of a Presence Declaration is shown
below:

<presence from="caches@muc.localhost/source’
to="ncdc@localhost/nede’ id="10">
<x xmlns="http://jabber.org/protocol/muc#user’>
<item jid="source@localhost/ncde’ affiliation="none’

10

15

25

30

35

40

45

55

60

65

14

-continued

role="participant’

/>

</x>
</presence>

An illustrative example of a List of Groups is shown below:

<message to="source@localhost/ncdc”
type="“chat” id="6">
<groups xmlns="cdn:data”>
<group type="“driven”
title="ms-big-buck-bunny”>
<url__regex>“ (. .. /BigBuckBunny_ 1080p.ism) /.
*$</url__regex>
<name>230.0.0.1</name>
<video__bitrate>350000</video__bitrate>
<audio__ bitrate>64000</audio__bitrate>
</group>
<group type="“driven” title="netflix”>
<url__regex>*“(http:// *netflix.*/. *\.wmv)/. *$</url__regex>
<name>230.0.0.2</name>
</group>
</groups>
</message>

In an illustrative embodiment, a group announcement may
be made. For example:

Stanza: message

Type: groupchat

From: caches@muc. <ncde-hostname>/nede
To: nede@host/nede

When groups are added to the NCDC 110, the NCDC 110
announces the new group to the subscriber controller and
cache 104 and/or the source controller 106 via MUC. The
NCDC 110 typically does not expect any responses or appli-
cation errors. The subscriber controllers and caches 104 and
the source controllers 106 are expected to handle the incom-
ing message properly and add a new group to their list of
groups.

An illustrative example of a MUC Announcement is shown
below:

<message from=" caches@muc.localhost/ncdc’
to="ncdc@localhost/nedc’
type="groupchat’ id="10">
<announcement xmlns="cdn : nede : group: announce’>
<group xmlns=“cdn:data” type="live”
title="style-live”>
<ur17regex>ﬁhttp: Jl. . JStyle.isml/ . *$</url__regex>
<name>230 .0.0.3</name>
<video__bitrate>150000</video__bitrate>
<audio__bitrate>96000</audio__bitrate>
</group>
</announcement>
</message>

In an illustrative embodiment, a group denouncement may
be made. For example:

Stanza: message

Type: groupchat

From: caches@muc. <ncde-hostname>/nede
To: nede@host/nede

When groups are removed from the NCDC 110, the NCDC
110 denounces the removed group using the subscriber con-
troller and cache 104 and/or the source controller 106 via
MUC. The NCDC 110 typically does not expect any

US 9,158,769 B2

15

responses or application errors. The subscriber controllers
and caches 104 and the source controllers 106 via MUC are
expected to handle the incoming message properly and
remove the group from their list.

Anillustrative example of a MUC Denouncement is shown
below:

<message from=" caches@muc.localhost/ncde’ to="ncde@localhost/nede’
type="groupchat’ id="7">
<denouncement xmlns="cdn : nede : group: denounce’
<group xmlns="cdn : data’ type="driven’ title=" cdn-bb’ />
</denouncement>
</message>

In an illustrative embodiment, a list users request may be
made. For example:

Stanza: iq
Type: get
Namespace: http://jabber.org/protocol/disco#items

This request makes a simple DISCO-compliant inquiry of
the items in the subscriber controller and cache 104 and/or the
source controller 106 via MUC. The result is a standard listing
of all the source controllers 106 and subscriber controller and
caches 104 registered in the MUC.

An illustrative example of a Request is shown below:

<iq to="caches@muc.localhost” type="get” id="5">
<query xmlns="http:// jabber. org/protocol/disco#items” />
</ig>

An illustrative example of a Response is shown below:

<iq from="caches@muc.localhost’ to="cli@localhost/ncdc’
id="5" type="result’>
<query xmlns="http: // jabber.org/protocol/disco#items”>
<item jid=" caches@muc.localhost/ncdc’ name="ncdc’ />
</query>
</ig>

As described above, the NCDC 110 manages the list of all
available groups. In an illustrative embodiment, a group list
query may be made. For example:

Stanza: iq

Type: get

To: nede@host/nede
Namespace: cdn : nede : groups

The call illustrated above retrieves a full list of all available
groups and their details from the NCDC 110. A simple cus-
tom query element specifies the data of interest:

<query xmlns="cdn:ncdc:groups”/>

This call is typically not expected to fail on the application
level. If no groups exist, an empty list is returned.

Anillustrative example of'a Request for the list of groups is
shown below:

<iq to="ncdc@localhost/nedc” type="get” id=*10">
<query xmlns="cdn:ncdc:groups” />
</iq>

5

10

15

20

25

30

40

45

50

16

An illustrative example of a Response for the list of groups
is shown below:

<iq xmlns="“jabber:client” from="ncdc@localhost/ncdc”
type=“result” id=*10">
<query xmlns="“cdn:ncdc:groups™>
<groups xmlns="cdn:data”>
<group type="driven” title=“ms-big-buck-bunny”>
<urlfregeX>Ahttp: /...
/BigBuckBunny_720p.ism/ .
*$</url_regex>
<name>230 .0.0.1</name>
<video_bitrate>350000</video_bitrate>
<audio_bitrate>64000</audio_bitrate>
</group>
<group type="live”
title="style-live”>
<urlfregeX>Ahttp: /... /Style.isml/ .
*$</url_regex>
<name>230 .0.0.3</name>
<video_bitrate>150000</video_bitrate>
<audio_bitrate>96000</audio_bitrate>
</group>
</groups>
</query>
</ig>

In anillustrative embodiment, a single group query may be
made. For example:

Stanza: iq

Type: get

To: nede@host/nede
Namespace: cdn : nede @ group

This call retrieves all details of one particular group. A
simple custom query element specifies the data of interest:

<query xmlns="“cdn:ncdc:group”/>

When a group is not found, an error is typically returned. In
this illustrative embodiment, the error code is 410.

An illustrative example of a Request for a group is shown
below:

<iq to="ncde@localhost/ncde” type="get” id="10">
<query xmlns=“cdn:ncdc:group” title="style-live” />
</ig>

An illustrative example of a Success Response for a group
is shown below:

<iq xmlns="jabber:client” from="ncdc@localhost/ncdc”
type="“result”
id="10">
<query xmlns=“cdn : nede : group”™>
<group xmlns=“cdn:data” type=“live” title="style-live”>
<ur17regeX>Ahttp: /.. JStyle.isml/ . *$</url_regex>
<name>230 .0.0.3</name>
<video_bitrate>150000</video_bitrate>
<audio_bitrate>96000</audio_bitrate>
</group>
</query>
</ig>

An illustrative example of as Error Response for a group is
shown below:

<iq xmlns="“jabber:client” from="ncdc@localhost/ncdc”
type=“error” id=*10">

US 9,158,769 B2

17

-continued

18

-continued

<query xmlns="cdn:ncde:group”/>
<error code="410" type="“cancel”>
<tag/>
<text xmlns="urn:ietf:params:xml:ns:xmpp-stanzas>Unknown
title. </t
<ferror>
</ig>

In an illustrative embodiment groups may be added. For
example:

Stanza: iq

Type: set

To: nede@host/nede

Namespace: cdn : nede : group: add

This iq stanza inserts a new group into the NCDC 110. The
query uses a custom namespace and the standard group XML
representation. This request can fail, if another group with the
same title has already been added. In this illustrative embodi-
ment, Error code 420 is used.

An illustrative example of a Request to add a group is
shown below:

<iq to="ncde@localhost/ncde” type="set” id="10">
<query xmlns="cdn : ncde : group: add”>
<group xmlns=“cdn:data” type="“driven” title="cdn-bb>
<name>230 .0.0.5</name>
<url_regex>
"(http: //cdn.a-bb.net/BigBuckBunny) / .*§
<furl_regex>
<video_bitrate>350000</video_bitrate>
<audio_bitrate>64000</audio_bitrate>
</group>
</query>
</ig>

An illustrative example of a Success Response is shown
below:

<iq from="nedc@localhost/ncde’ to=" cli@localhost/nede’ id="10"
type="result’>
<query xmlns="cdn : nede : group: add’ />
</ig>

An illustrative example of an Error Response is shown
below:

<iq from="nedc@localhost/nede’ to=" cli@localhost/nede’
id="10" type="error’>
<query xmlns="cdn : nede : group: add’ />
<error code="420" type="cancel”>
<tag/>
<text xmlns="urn:ietf:params:xml:ns:xmpp-stanzas’
>('Group with given title already registered.',
' cdn-bb') </text>
<ferror>
</ig>

In an illustrative embodiment groups may be removed. For
example:

Stanza: iq
Type: set

15

25

30

35

40

45

50

55

60

65

To: nede@host/nede
Namespace: cdn : nede : group: remove

This iq stanza removes a group from the NCDC 110. The
query typically uses a custom namespace and the standard
group XML representation. In this illustrative embodiment,
the request can fail, if no group with the specified title exists.
added.

An illustrative example of a Request to remove a group is
shown below:

<iq to="ncdc@localhost/nede” type="set” id="10">
<query xmlns="“cdn : ncdc : group: remove”>
<group xmlns="cdn:data” type="driven” title="cdn-bb”/>
</query>
</ig>

An illustrative example of a Success Response to remove a
group is shown below:

<iq from="nedc@localhost/ncde’ to=" cli@localhost/nede’ id="12"
type="result’>
<query xmlns="cdn : ncde : group: remove’ />
</ig>

An illustrative example of an Error Response to remove a
group is shown below:

<iq from="nedc@localhost/ncde’ to=" cli@localhost/nede’ id="10"
type="error’>
<query xmlns="cdn : ncde : group: remove’ />
<error code="421"type="cancel >
<tag/>
<text xmlns="urn:ietf:params:xml:ns:xmpp-stanzas’
>u' cdn-bb' </text>
<ferror>
</ig>

A flow diagram of the CDS 100 delivering video on
demand content to two subscribers according to an illustrative
embodiment is described with reference to FIG. 6. As illus-
trated, a first consumer starts watching the movie “Avatar” at
about 8:00 pm, and at about 8:05 pm a second consumer also
starts watching the same movie. When the first consumer
requests the movie a first subscriber controller and cache
1044 is initialized and announces the first subscriber control-
ler and cache’s 104a presence on the NCDC 110 XMPP
server and registers on a MUC by sending an initial presence
message to the NCDC 110, illustrated as 600. When the
NCDC 110 receives the initial presence message from the
first subscriber controller and cache 104a the NCDC 110
sends a current list of all groups, including a multicast group
(225.0.0.1) for the “avatar” group, to the first subscriber con-
troller and cache 104a, illustrated as 602.

Additionally, the source controller 106 is initialized and
announces the source controller’s 106 presence on the NCDC
110 XMPP server and registers on the MUC by sending an
initial presence message to the NCDC 110, illustrated as 604.
When the NCDC 110 receives the initial presence message
from the source controller 106 the NCDC 110 sends the
current list of all groups, including a multicast group
(225.0.0.1) for the “avatar” group, to the source controller
106, illustrated as 606.

US 9,158,769 B2

19

Once the first subscriber controller and cache 104a and the
source controller 106 are registered on the MUC, the first
subscriber controller and cache 104a sends a request for
content of the movie “Avatar” to the source controller 106,
illustrated as 608. When the source controller 106 receives the
request for content the source controller 106 creates a multi-
cast server on the source controller 106 for the “Avatar” group
(225.0.0.1), illustrated as 610. Then the source controller 106
returns a first fragment of the movie content to the first sub-
scriber controller and cache 104a, illustrated as 612. When
the first subscriber controller and cache 104a receives the first
fragment the first subscriber controller and cache 104a cre-
ates a first multicast client on the first subscriber controller
and cache 104a for the “Avatar” group (225.0.0.1), illustrated
as 614.

The source controller 106 also sends the first fragment of
the movie content to the first subscriber controller and cache
104a via multicast, illustrated as 616. Then, the first sub-
scriber controller and cache 104a sends a request for a second
fragment of the movie “Avatar” to the source controller 106,
illustrated as 618. The source controller 106 then sends the
second fragment of the movie content to the first subscriber
controller and cache 104a via unicast, illustrated as 620. The
source controller 106 also sends the second fragment of the
movie content via multicast, illustrated as 621.

At about 8:05 pm, the second consumer desires to begin
watching the movie “Avatar.”” A second subscriber controller
and cache 1045 creates a second multicast client on the sec-
ond subscriber controller and cache 1045 for the “Avatar”
group (225.0.0.1), illustrated as 622. The second subscriber
controller and cache 1045 will now receive fragments via
multicast starting with fragment (n) illustrated as 630. How-
ever, the second consumer subscriber controller and cache
1045 will not have any cache content for fragments 0 through
n-1 as these were transmitted before it registered as a multi-
cast client illustrated as 622. Therefore, the second subscriber
controller and cache 1045 requests and receives fragments 0
through n-1 via unicast as illustrated in 624 through 630.

The first subscriber controller and cache 104a sends a
request for a next fragment of the movie “Avatar” to the
source controller 106, illustrated as 632. The source control-
ler 106 then sends the next fragment of the movie content to
the first subscriber controller and cache 104a via unicast and
sends the same fragment of the movie content to the first
subscriber controller and cache 104a and the second sub-
scriber controller and cache 10454 via multicast, illustrated as
634 through 638. When all of the fragments have been sent,
i.e. the movie ends, the first subscriber controller and cache
104a unregisters with the MUC by sending a message to the
NCDC 110, illustrated as 640.

A flow diagram of the CDS 100 delivering live content to
two consumers according to an illustrative embodiment is
described with reference to FIG. 7. In this scenario it is
assumed that the live content has been configured to have a
continual multicast policy so that the source controller 106
has already created a multicast server for the content and is
already sending content fragments via multicast using the
group 225.0.0.2, as illustrated by 700. As illustrated, a first
consumer starts watching the live content at about 4:30 pm,
and at about 4:45 pm a second consumer also starts watching
the live content. Assuming the subscriber controllers and
caches 104 and source controllers 106 are already set up and
registered on the MUC, as described above, a first subscriber
controller and cache 1044 creates a first multicast client on the
first subscriber controller and cache 104a for the group

10

15

20

25

30

35

40

45

50

55

60

65

20

(225.0.02), illustrated as 702 and then sends a request for a
live content manifest to the source controller 106, illustrated
as 704.

The source controller 106 then returns the manifest to the
first subscriber controller and cache 1044, illustrated as 706.
The manifest includes the number (n) of the last fragment that
has been sent for the live content. The source controller 106
continues sending the next fragments, fragments (n+1) and
fragments (n+m) to the first subscriber controller and cache
104a via multicast, illustrated as 712 and 714. The first sub-
scriber controller and cache 1044 gets all the content starting
with fragment n+1 via multicast.

At about 4:45 pm, the second consumer desires to begin
watching the live content. A second subscriber controller and
cache 1045 creates a second multicast client on the second
subscriber controller and cache 10456 for the group
(225.0.0.2), illustrated as 716. The second subscriber control-
ler and cache 1045 then sends a request for the manifest to the
source controller 106, illustrated as 718. The source control-
ler 106 then returns the manifest to the second subscriber
controller and cache 1045, illustrated as 720. The manifest
includes the last fragment number n+m. Now both subscriber
controllers and caches 104a and 1045 receive the next (n+m+
1) and subsequent fragments of content via multicast. More
particularly, the source controller 106 then sends the next
fragment, fragment (n+m+1), to both the first subscriber con-
troller and cache 104a and the second subscriber controller
and cache 1045 via multicast, illustrated as 722 and 724.
Since in this scenario this is live content configured for con-
tinual multicast, the source controller 106 continues to send
the next fragments.

In an illustrative embodiment, Microsoft’s Smooth
Streaming is used by the CDS 100. While it is possible to use
the CDS 100 with any HTTP based multimedia stream,
Microsoft’s Smooth Streaming is well suited for the CDS 100
architecture.

The manifest of a Smooth Stream is an XML file that lists
all available quality levels and fragments of the full content.
Additional fields specify various other properties of the mul-
timedia content such as encodings and timing. The source
controller 106 uses the manifest exclusively to determine its
state and capabilities.

Since all content-related requests, including the manifest,
are intercepted by the source controller 106, the CDS 100 is
provided with the opportunity to manipulate the manifest for
the benefit of the CDS 100. For example, this allows the CDS
100 to restrict the available bit rates to a smaller subset or even
just one rate. Further, this allows for that ability to hide
undesired fragments or insert new ones such as commercials.

Typically, fragment URLs are easily constructed in
Smooth Streaming and contain a bit rate, media type (video or
audio) and the fragment id. Thus, the subscriber controller
and caches 104 have an easy opportunity to rewrite the URL
before requesting a response from the source controller 106.
For example, a lower or higher bit rate can be requested.

Furthermore, the content of a fragment may be a standard
MP4 container, which carries the actual bit rate and fragment
id. Thus, the consumer device 102 is even able to handle
content that does not properly correspond to the requested
URL. For example, if a video fragment with a bit rate of 350
k bps is requested, the returned content can be delivered in
150 k bps and the consumer device 102 will be able to handle
the response allowing another opportunity to manipulate the
response.

In an illustrative embodiment, the CDS 100 includes pre-
dictive listening. To support “channel surfing” with minimal
latency as each new channel is selected, the CDS 100 can

US 9,158,769 B2

21

apply a policy to subscribe to a set of adjacent content chan-
nels (those next lower and next higher in the channel list).
Then, as the consumer clicks up or down through the chan-
nels, the content will already be available in the local cache of
the subscriber controller and cache 104.

This policy can include the number of adjacent channels
included in the auto-subscription so that the CDS 100 can be
tuned to trade off between latency when surfing against band-
width use. In addition to the simple adjacent channel policy,
the CDS 100 can also include predictive listening based on
the past measured view statistics of each channel. Using those
statistics the CDS 100 can predict which channels are likely to
be viewed on each network segment and/or by each consumer
and then automatically create multicast streams for popular
channels and/or automatically subscribe a subscriber control-
ler and cache 104 to a channel or multicast stream indepen-
dent of consumer action.

In an illustrative embodiment, the CDS 100 includes Digi-
tal Video Recording (DVR). DVR can be achieved by saving
fragments in the cache of the subscriber controller and cache
104. A custom manifest can be created that contains only the
recorded bit rate and the fragments that were actually
received during the recording. The manifest can also be used
to store additional meta-data about the content, such as title,
description, copyright, actors, etc. Further, an additional
component of the subscriber controller and cache 104 can
provide the features to the consumer to control when and what
to record, and manage the recordings.

In an illustrative embodiment, the CDS 100 incorporates
advertisement insertion technology. The advertisement inser-
tion technology may be incorporated both network-wide and
locally where the local insertion places adverts for a local
distribution area with adverts that are typically for a single
consumer or a local distribution area with adverts that are
typically for local services, etc.

The CDS 100 can provide advertisement insertion support
by adding features to allow the manipulation of the content
and manifest(s) of regular content to insert content and frag-
ments that represent the inserted adverts. In this way, there is
no requirement on the consumer device 102, the mechanism
is transparent to the consumer device 102.

Advertisement insertion is performed by the source con-
troller 106 or the subscriber controller and cache 104. In
network-wide advertisement insertion, the source controller
106 in FIG. 1 is configured to insert advertisement content
into a content stream being received from the content source
server 108. The configuration may include polices for the
insertion time which may be relative to time of day or time
with the content stream; the advertisement content to insert at
each time is also configured, which may also be specific for
each content stream. When the content is received by the
source controller 106 as fragments as explained earlier, the
source controller 106 inserts the advertisement content by
replacing the original fragment with the advertisement con-
tent and also copying the original fragment to a new fragment
whose fragment number corresponds to the time at which the
advertisement content ends and the original content will
resume. For example, the original content may have fragment
numbers 100 through 130 which represent 30 seconds of
content. The advertisement to be inserted has 30 seconds of
content with fragment numbers 0 through 15 where each
advertisement fragment contains a different time length of
content compared to the original content. When the source
controller 106 would send fragment 100 of the original con-
tent, the source controller 106 instead sends fragment 0 of the
advertisement content but does so by overwriting the data of
fragment 100 of the original content with the data of fragment

35

40

45

55

22

0 of the advertisement content. The overwriting process may
also use part of a single advertisement fragment of parts of
more than 1 advertisement fragment if the time length of the
original fragment being replaced needs to be preserved for
transparency at the consumer device. As subsequent adver-
tisement fragments are substituted into the content stream, the
source controller 106 stores the original fragment data that
has been replaced. Once the advertisement content end is
reached, the source controller 106 resumes sending the origi-
nal content starting with the data from original fragment 100,
but the actual fragment number has now advanced because of
the inserted advertisement content. When the source control-
ler 106 is receiving content as fragments from the content
source server 108, the source controller 106 maintains knowl-
edge of how to change the received fragment before sending
to the subscriber controller and cache 104. For example, the
source controller 106 changes the fragment number to com-
pensate for the advertisement insertion that has already been
done. In addition if the advertisement insertion has required
partial fragment replacement then the source controller 106
also reassembles the correct data into each new fragment the
source controller 106 sends.

Ifthe advertisement insertion is local then it is done by the
subscriber controller and cache 104. The original content may
be adjusted by the source controller 106 to add advertisement
insertion periods which are then recognized by the subscriber
controller and cache 104. In this case the subscriber controller
and cache 104 uses local policy including advertisement con-
tent and content stream and time of day or time in content to
replace the content fragments received from the source con-
troller 106 with the local advertisement content. If a local
subscriber controller and cache 104 has no local advertise-
ment for a particular content stream or time defined then the
subscriber controller and cache 104 simply sends the content
from the source controller 106 which may include network-
wide default advertisement content inserted using the net-
work-wide technique describer earlier by the source control-
ler 106.

Alternatively, the source controller 106 may not be adjust-
ing the original content with advertisement insertion. In this
case, the local subscriber controller and cache 104 imple-
ments an algorithm similar to the network-wide source con-
troller algorithm to insert advertisements and adjust the origi-
nal content. Any subscriber controller and cache 104 can do
advertisement insertion in this way including the subscriber
controller and cache 104 for a specific consumer. Therefore,
the advertisement insertion can be localized at any level
including a specific consumer.

If a subscriber controller and cache 104 serves more than
one local area for the purposes of advertisement insertion,
then the subscriber controller and cache 104 may perform
different advertisement insertions for each local area on the
same content stream the subscriber controller and cache 104
is receiving. In this case, the subscriber controller and cache
104 operates per-local-area instances of the advertisement
insertion algorithm and it uses different multicast groups to
send the content to each local area.

The CDS 100 has been primarily described above as using
a two-level distribution hierarchy using the source controller
106 and the subscriber controller and cache 104. In an illus-
trative embodiment, the source controller 106 and the sub-
scriber controller and cache 104 can also be placed on the
same physical node, for example on a Distribution System,
allowing arbitrarily deep delivery hierarchies. An example of
adeep delivery hierarchy according to an illustrative embodi-
ment is described with reference to FIG. 8. According to FIG.
8, one or more Distribution Systems 800a-c may be included

US 9,158,769 B2

23

in the system. The Distribution System(s) 800a-c is illustra-
tively one or more servers, computers, processors, and/or
databases. A source controller and a subscriber controller and
cache may be placed within the Distribution System 8004a-c.

As illustrated in FIG. 8, a content source server 108 can be
in communication with one or more source controllers 106a
and 1065. The source controller 1064 is in communication
with one or more subscriber controller and caches 104, in the
two-level distribution hierarchy. The source controller 1065
is in communication with one or more Distribution Systems
800q and 8005, in a deep delivery hierarchy. The Distribution
System 800q is in is in communication with one or more
subscriber controller and caches 104. The Distribution Sys-
tem 8005 is in communication with an additional one or more
Distribution Systems 800¢, which in turn are each in commu-
nication with one or more subscriber controller and caches
104. It should be appreciated by one skilled in the art that FIG.
8 is merely one example of a deep delivery hierarchy and that
any number of Distribution Systems 800a-c¢ can be placed
within the hierarchy.

Where a provider’s distribution network is large, a deep
delivery hierarchy provides the ability to make the CDS 100
solution scalable. In particular, the deep delivery hierarchy
allows for the multicast distribution to be hierarchically seg-
mented allowing different multicast groups to be used for the
same content at different levels of the hierarchy, thus reducing
the span of a specific multicast group. The deep delivery
hierarchy also allows for local distribution of source control-
lers 106 allowing purely local content to be restricted to only
the local part of the network.

In another illustrative embodiment, the source controller
106 and the subscriber controller and cache 104 can also be
placed on the same physical node, for example on a Network-
to-Network Gateway, at the edges of a provider’s network
where that network joins another provider’s network. The
Network-to-Network Gateway illustratively includes one or
more servers, computers, processors, and/or databases. In this
embodiment such a combined system provides an inter-net-
work gateway function. In this way a provider A’s content can
be made available to its consumers while those consumers are
physically attached to a provider B’s network (remote sub-
scribers). Such an inter-network gateway acts in effect as an
aggregate consumer representing the aggregate of all remote
consumers. The default polices and algorithms of the sub-
scriber controller and cache 104 can be modified to optimize
the inter-network gateway role. For example, an inter-net-
work gateway of provider B with a large number of remote
consumers will want a more aggressive pre-caching and
cache retention policy than a normal subscriber controller and
cache 104.

In an illustrative embodiment, the CDS 100 can be opti-
mized by providing interaction with a resource management
system such as an Active Broadband Networks Active
Resource Manager (ARM). The ARM system(s) measure the
activity of each consumer and the congestion state of each
network segment. This information can be used as input to the
CDS 100 to allow the CDS 100 to make optimal decisions
such as what bit rate to use for content. For example, when
network segments are congested the announced manifests of
available content can have their bit rates reduced.

The ARM can also be used as an Application Manager in
which role the CDS 100 can request that the ARM request
specific resources be setup for a content to be delivered
between the last hop router, such as a cable modem termina-
tion system (CMTS) in a Cable network, and the subscriber
controller and cache 104. In a Cable network, the ARM uses
a PacketCable MultiMedia (PCMM), which is part of the

10

15

20

25

30

35

40

45

50

55

60

65

24

Cablelabs DOCSIS® standard suite, to set up gates on the
CMTS which reserve resources to be used for the content
delivery. In a Digital Subscriber Loop (DSL) or similar net-
work, or a WiFi network or 3GPP or 4GPP wireless network,
the ARM uses protocols such as RADIUS or DIAMETER to
reserve resources to be used for content delivery.

The ARM can reserve resources whether the delivery is via
multicast or unicast. In either unicast or multicast, the inter-
working between the CDS 100 and the ARM allows for
optimized delivery of content through dynamic resource res-
ervation on the network segment.

In an illustrative embodiment, each consumer device 102,
to which the subscriber controller and cache 104 is attached,
may use multiple downstream channels for reception of data,
such as in a Cable network that uses DOCSIS® 3.0. Within
the same MAC-layer segment different consumer devices 102
may be using different sets of channels. These sets may be
non-overlapping or they may have some channels in com-
mon. Moreover, the set of channels is use by a consumer
device 102 can change over time. Finally, consumer devices
102 with different DOCSIS® version capabilities have
restrictions on which channels they can use. This creates a
specific set of problems for optimized delivery of multicast in
this case. By default, each specific set of channels on which a
subscriber exists that requests the same multicast group will
result in a separate transmission of the multicast packets over
its channel set. Where there is overlap between the sets this
causes multiple copies of the same data to be sent where only
one copy is required with resulting waste of transmission
resources.

Extension of the combined CDS 100 and ARM systems
can provide detection of the actual overlap of the channel sets
and appropriate migration to add or remove multicast trans-
missions by manipulating the subscriber controller and
cache’s 104 procedures for making multicast group join/
delete requests. In this way the combined system can opti-
mize the use of the last hop bandwidth by removing unnec-
essary multicast transmission.

While the systems and methods for network content deliv-
ery have been described and illustrated in connection with
certain embodiments, many variations and modifications will
be evident to those skilled in the art and may be made without
departing from the spirit and scope of the disclosure. The
systems and methods disclosed herein are thus not to be
limited to the precise details of methodology or construction
set forth above as such variations and modification are
intended to be included within the scope of the disclosure.
Moreover, unless specifically stated any use of the terms first,
second, etc. do not denote any order or importance, but rather
the terms first, second, etc. are used to distinguish one ele-
ment from another.

What is claimed is:

1. A method of delivering content comprising:

registering, by a source controller, on a multi-user chat by
sending a message to a network content delivery con-
troller NCDC);

receiving, by the source controller, a multicast group list in
an Extensible Messaging and Presence Protocol
(XMPP) from the NCDC in response to registering on
the multi-user chat;

receiving, by a source controller at a network edge, a
request for content from a subscriber controller when the
content does not exist in the subscriber controller;

creating, by the source controller, a multicast stream for the
requested content in response to receiving the request;
and

US 9,158,769 B2

25

transmitting, by the source controller, the multicast stream
to the subscriber controller when the subscriber control-
ler is subscribed to the multicast stream, wherein the
multicast stream delivers the requested content to a plu-
rality of subscriber controllers.

2. The method of claim 1, wherein the creating the multi-
cast stream, further includes creating, by the source control-
ler, a specific multicast stream associated with a multicast
group of the multicast group list.

3. The method of claim 1, further comprising creating, by
the source controller, a plurality of multicast streams for
popular multicast groups of the multicast group list.

4. The method of claim 1, wherein the transmitting the
multicast stream includes transmitting, by the source control-
ler, a plurality of content fragments to the subscriber control-
ler.

5. The method of claim 4, further comprising replacing, by
the source controller, at least one of the plurality of content
fragments with at least one advertisement content fragment.

6. The method of claim 5, further comprising copying, by
the source controller, the replaced at least one of the plurality
of content fragments to at least one new content fragment
corresponding to an end of the at least one advertisement
content fragment.

7. A network content delivery method comprising:

receiving, by a network content delivery controller
(NCDC), a first message from a first subscriber control-
ler for registering with the NCDC;

registering, by the NCDC, the first subscriber controller on
a multi-user chat in response to receiving the first mes-
sage;

receiving, by the NCDC, a second message from a source
controller on an edge of the network for registering with
the NCDC;

registering, by the NCDC, the source controller on the
multi-user chat in response to receiving the second mes-
sage;

transmitting, by the NCDC, a multicast group list in an
Extensible Messaging and Presence Protocol (XMPP)
to the first subscriber controller and the source control-
ler; and

automatically creating multicast stream by the source con-
troller in response to receiving a request for content from
the first subscriber controller, wherein the multicast
stream delivers the content simultaneously to a plurality
of subscriber controllers subscribed to the multicast
stream, including the first subscriber controller.

8. A network content delivery system comprising:

a source controller on an edge of a network;

a subscriber controller in communication with to the
source controller and configured to receive content via a
multicast stream;

a network content delivery controller NCDC) in commu-
nication with the subscriber controller and the source
controller;

the source controller and the subscriber controller config-
ured to register on a multi-user chat by sending a mes-
sage to the NCDC;

the NCDC configured to transmit a multicast group list in
an Extensible Messaging and Presence Protocol
(XMPP) to each of the subscriber controller and the
source controller in response to the source controller and
the subscriber controller registering on the multi-user
chat;

the source controller configured to initiate the multicast
stream for transmitting the content in response to receiv-
ing a request for the content from the subscriber control-

5

10

15

20

30

35

40

45

50

55

60

65

26

ler and to transmit the content to the subscriber control-
ler via the multicast stream, wherein the multicast
stream is adapted to deliver the content to a plurality of
subscriber controllers; and

the subscriber controller configured to subscribe to the

multicast stream and to receive the content via the mul-
ticast stream.

9. The network content delivery system of claim 8, further
comprising a distribution system hierarchically placed
between the subscriber controller and the source controller.

10. The network content delivery system of claim 9,
wherein the distribution system includes a distribution sys-
tem subscriber controller and a distribution system source
controller on a same node.

11. The network content delivery system of claim 10,
wherein the distribution system is a network-to-network gate-
way configured to allow distribution of the content from a first
provider network into a second provider network.

12. The network content delivery system of claim 8, further
comprising a resource manager configured to measure a con-
gestion state of the network.

13. A method for automated multicast content delivery
comprising:

registering, by a subscriber controller, on a multi-user chat

by sending a message to a network content delivery
controller (NCDC);

receiving, by the subscriber controller, a multicast group

list in an Extensible Messaging and Presence Protocol
(XMPP) from the NCDC in response to registering on
the multi-user chat;
transmitting, by the subscriber controller, a request for
content to a source controller when the content does not
exist in the subscriber controller and in response to
receiving a request for the content from a first consumer
device on a network segment;
automatically creating, by the source controller, a multicast
stream for the content in response to receiving the
request for the content from the subscriber controller;

subscribing, by the subscriber controller, to the multicast
stream;

receiving, by the subscriber controller, the content via the

multicast stream;

transmitting, by the subscriber controller, the content to the

first consumer device; and

subscribing, by a second subscriber controller, to the mul-

ticast stream in response to receiving a request for the
content from a second consumer device.

14. The method of claim 13, further comprising automati-
cally creating, by the source controller, a plurality of multi-
cast streams for popular content.

15. The method of claim 14, further comprising automati-
cally subscribing, by the subscriber controller, to at least one
of the plurality of multicast streams of the popular content
created by the source controller.

16. The method of claim 13, further comprising transmit-
ting a unicast stream of the content to the second subscriber
controller when the second consumer device requests the
content of the multicast stream at a time later than the first
consumer device.

17. The method of claim 13, further comprising collecting
segment congestion data of the network segment by a
resource manager.

18. The method of claim 17, further comprising adjusting
content manifest in response to the segment congestion data.

US 9,158,769 B2
27

19. The method of claim 18, wherein the adjusting
includes:
reducing a bit rate of the content manifest when the net-
work segment is congested; and
increasing the bit rate of the content manifest when the 5
network segment is uncongested.
20. The method of claim 13, further comprising reserving
resources on the network segment for delivery of the content.
21. The method of claim 20, wherein the reserving the
resources includes reserving the resources on the network 10
segment for delivery of the content using a Packet Cable
MultiMedia technique.

#* #* #* #* #*

28

